تخمین هدایت هیدرولیکی اشباع در برخی از خاکهای استان ایلام با استفاده از شبکههای عصبی مصنوعی و روشهای رگرسیونی
نویسندگان
چکیده مقاله:
هدایت هیدرولیکی اشباع ) Ks ( یکی از ورودیهای مهم در مدلسازی جریان آب و انتقال آلایندهها در خاک، طراحی سیستمهای آبیاری و زهکشی، مدلسازی آبهایزیرزمینی و فرایندهای زیستمحیطی است. اندازهگیری مستقیم Ks در مزرعه و آزمایشگاه میسّر میباشد؛ لیکن، معمولاً زمانبر، پرهزینه و دشوار بوده و در سطوحبزرگ نیز غیرعملی است. افزون بر این، بهدلیل غیرهمگن بودن خاک و خطاهای آزمایشگاهی، تا حدودی این اندازهگیریها غیرقابل اعتماد هستند. یکی از راههای غلبهبر این مشکل، استفاده از روشهای غیرمستقیم همچون توابع انتقالی خاک میباشد. از آنجایی که تاکنون در منطقه موردمطالعه توابعی انتقالی جهت برآورد Ks پیشنهادنشده است؛ لذا در این پژوهش با استفاده از شبکههای عصبی مصنوعی و رگرسیونهای آماری و بهرهگیری از تعدادی محدود یا مجموعهای وسیعتر از ویژگیهایزودیافت خاکی، توابعی انتقالی برای برآورد Ks تبیین و کارآیی آنها ارزیابی شد. بدین منظور، هدایت هیدرولیکی اشباع 95 نقطه محل از زیرحوزههای آبخیز چرداول -چمشیر در استان ایلام با استفاده از پرمامتر گلف اندازهگیری شد. همچنین برخی از ویژگیهای زودیافت خاک این نقاط مطالعاتی نیز تعیین شد. سپس اعتبار توابعاشتقاق یافته در تعیین Ks ، با استفاده از جذر میانگین مربعات خطا ) RMSE (، میانگین خطا ) ME ( و ضریب همبستگی پیرسون ) r ( ارزیابی شد. با توجه به نتایج، Ksبا میانگین هندسی قطر ذارت و مقدار شن دارای بیشترین همبستگی بود )بهترتیب دارای r معادل 58 / ۰ و 56 / ۰(. نتایج نشان داد در صورت دسترسی به تعداد کمی ازویژگیهای زودیافت خاکی، توابع انتقالی رگرسیونی و شبکه عصبی مصنوعی میتوانند Ks را با دقت نسبتاً خوبی پیشبینی کنند )به ترتیب دارای85 / ۰ = rR-val ، mm/hr 81 / 6 = RMSER-val و 87 / ۰ = rANN-test ، mm/hr 8۰ / 1۰ = RMSEANN-test (. این در حالی است که با توجه به نتایج، در صورت استفاده از ویژگیهای زودیافت بیشتر، دقت پیشبینی Ks توسط مدل شبکه عصبی در هر دو مرحله آموزش و آزمون افزایش یافت ) 92 / ۰ = rtrain ،mm/hr 36 / 4 = RMSEtrain و 89 / ۰ = rtest ، mm/hr 17 / 7 = RMSEtest (. در مجموع نتایج نشان دادند که شبکههای عصبی مصنوعی در مقایسه با مدلهای رگرسیونی خطی دارای کارآیی نسبتاً بهتر در تخمین هدایت هیدرولیکی اشباع خاک میباشند.
منابع مشابه
ارزیابی مدلهای رگرسیونی و شبکه عصبی مصنوعی در تخمین هدایت هیدرولیکی اشباع خاک در مازندران
هدایت هیدرولیکی اشباع یکی از خصوصیات مهم هیدرولیکی در علوم مرتبط با آب، خاک و کشاورزی میباشد که در مدلسازی حرکت املاح و آب در خاک بسیار اهمیت دارد.اندازهگیری آزمایشگاهی و صحرایی آن دشوار، وقتگیر و پرهزینه بوده و امکان شناسایی تغییرپذیری مکانی و زمانی آن در مقیاس وسیع عملا وجود ندارد.امروزه با استفاده از روشهای غیرمستقیم مانند توابع انتقالی میتوان آن را با دقت بالایی برآورد نمود. پژوهش حاضر...
متن کاملبرآورد هدایت هیدرولیکی اشباع خاکهای منتخب از دشت اردبیل با استفاده از مدلهای رگرسیونی و شبکههای عصبی مصنوعی
هدایت هیدرولیکی اشباع بهعنوان یک ویژگی دیریافت میتواند از ویژگیهای زودیافت خاک شامل جرم ویژه ظاهری، بافت خاک، کربن آلی، کربنات کلسیم معادل با استفاده از توابع انتقالی رگرسیونی و شبکههای عصبی مصنوعی برآورد شود. هدایت هیدرولیکی اشباع خاک به روش بار افتان در 100 نمونه خاک جمعآوری شده از دشت اردبیل تعیین شد. بعد از انجام تجزیههای شیمیایی و فیزیکی روی نمونههای خاک، دادهها به دو سری دادههای...
متن کاملمقایسه روشهای شبکه عصبی مصنوعی و رگرسیونی برای پیشبینی هدایت هیدرولیکی اشباع خاکهای استان خوزستان
Direct measurement of soil hydraulic characteristics is costly and time-consuming. Also, the method is partly unreliable due to soil heterogeneity and laboratory errors. Instead, soil hydraulic characteristics can be predicted using readily available data such as soil texture and bulk density using pedotransfer functions (PTFs). Artificial neural networks (ANNs) and statistical regression are t...
متن کاملکاربرد شبکه عصبی مصنوعی در پیشبینی هدایت هیدرولیکی اشباع با استفاده از پارامترهای فیزیکی خاک
ویژگیهای هیدرولیکی خاک همچون هدایت هیدرولیکی اشباع و غیراشباع در مطالعات زیست محیطی نقش مهمی را ایفا مینمایند. از آنجائیکه اندازهگیری مستقیم این قبیل ویژگیهای هیدرولیکی خاک امری وقتگیر و هزینهبر است روشهای غیرمستقیمی چون توابع انتقالی و شبکههای عصبی مصنوعی بر مبنای پارامترهای سهل الوصول خاک توسعه یافتهاند. در این خصوص در این مطالعه، از شبکه عصبی مصنوعی به منظور تخمین هدایت هیدرولیک...
متن کاملکاربرد روشهای رگرسیونی و شبکههای عصبی به منظور تخمین هدایت هیدرولیکی اشباع خاک منطقه زاگرس مرکزی
With the advent of advanced geographical informational systems (GIS) and remote sensing technologies in recent years, topographic (elevation, slope, and aspect) and vegetation attributes are routinely available from digital elevation models (DEMs) and normalized difference vegetation index (NDVI) at different spatial (watershed, regional) scales. This study explores the use of topographic and v...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 7 شماره 3
صفحات 131- 149
تاریخ انتشار 2018-04-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023